NASA Invites Public Comment on Plans for Mars Sample Return Campaign

721
NASA has finished the system requirements review for its Mars Sample Return Program, which is nearing completion of the conceptual design phase. During this phase, the program team evaluated and refined the architecture to return the scientifically selected samples, which are currently in the collection process by NASA’s Perseverance rover in the Red Planet’s Jezero Crater. The architecture for the campaign, which includes contributions from the European Space Agency (ESA), is expected to reduce the complexity of future missions and increase probability of success. “The conceptual design phase is when every facet of a mission plan gets put under a microscope,” said Thomas Zurbuchen, associate administrator for science at NASA Headquarters in Washington. “There are some significant and advantageous changes to the plan, which can be directly attributed to Perseverance’s recent successes at Jezero and the amazing performance of our Mars helicopter.” This advanced mission architecture takes into consideration a recently updated analysis of Perseverance’s expected longevity. Perseverance will be the primary means of transporting samples to NASA’s Sample Retrieval Lander carrying the Mars Ascent Vehicle and ESA’s Sample Transfer Arm. As such, the Mars Sample Return campaign will no longer include the Sample Fetch Rover or its associated second lander. The Sample Retrieval Lander will include two sample recovery helicopters, based on the design of the Ingenuity helicopter, which has performed 29 flights at Mars and survived over a year beyond its original planned lifetime. The helicopters will provide a secondary capability to retrieve samples cached on the surface of Mars. The ESA Earth Return Orbiter and its NASA-provided Capture, Containment, and Return System remain vital elements of the program architecture. With planned launch dates for the Earth Return Orbiter and Sample Retrieval Lander in fall 2027 and summer 2028, respectively, the samples are expected to arrive on Earth in 2033. With its architecture solidified during this conceptual design phase, the program is expected to move into its preliminary design phase this October. In this phase, expected to last about 12 months, the program will complete technology development and create engineering prototypes of the major mission components. This refined concept for the Mars Sample Return campaign was presented to the delegates from the 22 participating states of Europe’s space exploration program, Terrae Novae, in May. At their next meeting in September, the states will consider the discontinuation of the development of the Sample Fetch Rover. “ESA is continuing at full speed the development of both the Earth Return Orbiter that will make the historic round-trip from Earth to Mars and back again; and the Sample Transfer Arm that will robotically place the sample tubes aboard the Orbiting Sample Container before its launch from the surface of the Red Planet,” said David Parker, ESA director of Human and Robotic Exploration. The respective contributions to the campaign are contingent upon available funding from the U.S. and ESA participating states. More formalized agreements between the two agencies will be established in the next year. “Working together on historic endeavors like Mars Sample Return not only provides invaluable data about our place in the universe but brings us closer together right here on Earth,” said Zurbuchen. The first step in the Mars Sample Return Campaign is already in progress. Since it landed at Jezero Crater Feb. 18, 2021, the Perseverance rover has collected 11 scientifically-compelling rock core samples and one atmospheric sample. Bringing Mars samples to Earth would allow scientists across the world to examine the specimens using sophisticated instruments too large and too complex to send to Mars and would enable future generations to study them. Curating the samples on Earth would also allow the science community to test new theories and models as they are developed, much as the Apollo samples returned from the Moon have done for decades. This strategic NASA and ESA partnership will fulfill a solar system exploration goal, a high priority since the 1970s and in the last three National Academy of Sciences Planetary Science Decadal Surveys.
NASA has finished the system requirements review for its Mars Sample Return Program, which is nearing completion of the conceptual design phase. During this phase, the program team evaluated and refined the architecture to return the scientifically selected samples, which are currently in the collection process by NASA’s Perseverance rover in the Red Planet’s Jezero Crater. The architecture for the campaign, which includes contributions from the European Space Agency (ESA), is expected to reduce the complexity of future missions and increase probability of success. “The conceptual design phase is when every facet of a mission plan gets put under a microscope,” said Thomas Zurbuchen, associate administrator for science at NASA Headquarters in Washington. “There are some significant and advantageous changes to the plan, which can be directly attributed to Perseverance’s recent successes at Jezero and the amazing performance of our Mars helicopter.” This advanced mission architecture takes into consideration a recently updated analysis of Perseverance’s expected longevity. Perseverance will be the primary means of transporting samples to NASA’s Sample Retrieval Lander carrying the Mars Ascent Vehicle and ESA’s Sample Transfer Arm. As such, the Mars Sample Return campaign will no longer include the Sample Fetch Rover or its associated second lander. The Sample Retrieval Lander will include two sample recovery helicopters, based on the design of the Ingenuity helicopter, which has performed 29 flights at Mars and survived over a year beyond its original planned lifetime. The helicopters will provide a secondary capability to retrieve samples cached on the surface of Mars. The ESA Earth Return Orbiter and its NASA-provided Capture, Containment, and Return System remain vital elements of the program architecture. With planned launch dates for the Earth Return Orbiter and Sample Retrieval Lander in fall 2027 and summer 2028, respectively, the samples are expected to arrive on Earth in 2033. With its architecture solidified during this conceptual design phase, the program is expected to move into its preliminary design phase this October. In this phase, expected to last about 12 months, the program will complete technology development and create engineering prototypes of the major mission components. This refined concept for the Mars Sample Return campaign was presented to the delegates from the 22 participating states of Europe’s space exploration program, Terrae Novae, in May. At their next meeting in September, the states will consider the discontinuation of the development of the Sample Fetch Rover. “ESA is continuing at full speed the development of both the Earth Return Orbiter that will make the historic round-trip from Earth to Mars and back again; and the Sample Transfer Arm that will robotically place the sample tubes aboard the Orbiting Sample Container before its launch from the surface of the Red Planet,” said David Parker, ESA director of Human and Robotic Exploration. The respective contributions to the campaign are contingent upon available funding from the U.S. and ESA participating states. More formalized agreements between the two agencies will be established in the next year. “Working together on historic endeavors like Mars Sample Return not only provides invaluable data about our place in the universe but brings us closer together right here on Earth,” said Zurbuchen. The first step in the Mars Sample Return Campaign is already in progress. Since it landed at Jezero Crater Feb. 18, 2021, the Perseverance rover has collected 11 scientifically-compelling rock core samples and one atmospheric sample. Bringing Mars samples to Earth would allow scientists across the world to examine the specimens using sophisticated instruments too large and too complex to send to Mars and would enable future generations to study them. Curating the samples on Earth would also allow the science community to test new theories and models as they are developed, much as the Apollo samples returned from the Moon have done for decades. This strategic NASA and ESA partnership will fulfill a solar system exploration goal, a high priority since the 1970s and in the last three National Academy of Sciences Planetary Science Decadal Surveys.

NASA is seeking public comments on a draft environmental impact statement for the agency’s Mars Sample Return (MSR) campaign. Comments are due by Monday, Dec. 19.

Comments can be submitted online, through the mail, or through participation in a series of virtual and in-person meetings. Advanced registration for meeting options, including in-person meetings in Utah, is not required.

Two virtual meetings to discuss the Draft Programmatic Environmental Impact Statementfor the campaign will take place on Wednesday, Nov. 30. The first begins at 1 p.m. MST, followed by a second opportunity at 6 p.m. MST. Participate online at either time by joining the following link:

Mars Sample Return WebEx

The WebEx will be accessible to participants about 15 minutes before the event begins, and will include real-time automated closed captioning. To access audio-only dial 510-210-8882, and use meeting number 901-525-785.

The in-person meetings will be held at 6 p.m. MST on Tuesday, Dec. 6, at the Wendover Community Center, 112 E Moriah Avenue, Wendover, Utah, and on Wednesday, Dec. 7, at the Clark Planetarium, 110 S 400 W, Salt Lake City, Utah.

All public meetings will include a 15-minute presentation on the purpose of the meetings, the MSR campaign project schedule, opportunities for public involvement, a summary of the proposed action and alternatives, discussion of potential environmental impacts from the proposed action, and an overview of the programmatic approach to National Environmental Policy Act compliance in general, and NASA’s proposed action specifically. The in-person meetings also will include a 45-minute open house before the official public comment portion of the meeting.

Subject matter experts will be available on-site during the open house to answer questions from the public, and to discuss informational posters and distribute related materials about the draft statement and the proposed Mars Sample Return campaign. These materials are also available online.

NASA and ESA (European Space Agency) are planning to use robotic Mars orbiter and lander missions launched in 2027 and 2028 to retrieve samples of rocks and atmosphere being gathered by NASA’s Perseverance rover and return them to Earth. The samples of Mars material, securely isolated inside a robust Earth Entry System using a layered “container within a container” approach, could be brought to Earth in the early 2030s, landing notionally at the Utah Test and Training Range operated by the U.S. Air Force. The Earth Entry System would then be transported to a specialized MSR sample receiving facility.

NASA will consider all comments received during the PEIS public comment period in the subsequent development of the MSR Final Environmental Impact Statement.

In addition to receiving comments during the public meetings, comments may be sent to NASA in the following ways:

  • Federal e-Rulemaking Portal: Follow the online instructions for submitting comments and include Docket No. NASA-2022-0002. Please note that NASA will post all comments online without changes, including any personal information provided.
  • By mail to Steve Slaten, NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, M/S: 180-801, Pasadena, CA 91109–8099

Additional information on the agency’s National Environmental Policy Act process and the proposed campaign is available online.

Previous articleThe global innovative fashion business is massive
Next articleThunder Bay – Missing 62-Year-Old Located